1,426 research outputs found

    Finding the time for fluorescence. Its measurement and applications in life science

    Get PDF
    We summarise how developments in technology have brought fluorescence lifetime spectroscopy from being the preserve of the specialist to becoming a major tool for research across many science and engineering disciplines. We highlight the advantages which fluorescence lifetime measurements can bring, not only to underpin research, but also through application in helping to solve real-world problems. We illustrate this with recent examples in cancer and Alzheimer’s research, which are aimed at improving disease understanding, diagnosis and therapeutics

    Nanometrology

    Get PDF
    Methods and protocols are described when using fluorescence metrology to determine the average nanoparticle (np) size in colloids in the range of 1–10 nm. The technique is based on determining the rotational correlation time of the np from the decay of fluorescence anisotropy of a dye that is electrostatically or covalently attached to the np as it undergoes Brownian rotation. The np size is then calculated from the Stokes–Einstein equation. The exemplar of silica nps is presented, but the approach can also be applied to other types of nps

    Tyrosine photophysics during the early stages of β-amyloid aggregation leading to Alzheimer's

    Get PDF
    We have monitored the formation of toxic β-amyloid oligomers leading to Alzheimer's disease by detecting changes in the fluorescence decay of intrinsic tyrosine. A new approach based on the non-Debye model of fluorescence kinetics resolves the complexity of the underlying photophysics. The gradual disappearance of nonmonotonic fluorescence decay rates, at the early stages of aggregation as larger, tighter-packed oligomers are formed, is interpreted in terms of tyrosine-peptide dielectric relaxation influencing the decay. The results demonstrate the potential for a new type of fluorescence lifetime sensing based on dual excited-state/dielectric relaxation, with application across a broad range of biological molecules. The results also reconcile previously conflicting models of protein intrinsic fluorescence decay based on rotamers or dielectric relaxation by illustrating conditions under which both are manifest

    NADPH as a potential intrinsic probe for tumour margin estimation

    Get PDF
    The fluorescent properties of the reduced coenzyme NADH and its phosphorylated derivative (NADPH) have been explored in order to assess their potential as an intrinsic probe for cancer surgery. NADPH production is increased in cancer cells to quench reactive oxygen species and meet higher demands for biosynthesis, and has attractive fluorescent properties such as emission towards the visible part of the spectrum and a relatively long fluorescence lifetime upon binding to enzymes (~ 1 – 6.5 ns) that helps discriminate against other endogenous species. Different environmental effects on NAD(P)H fluorescence are reported here, including an increase in lifetime upon oxygen removal, an ability to retain its fluorescent properties in a complex medium (a silica phantom) and its fluorescence lifetime also being distinguishable in a cell environment. In addition, the development of a miniaturized liquid light guide filter-based timecorrelated single photon counting fluorescence lifetime system is reported as a step towards time-resolved visual imaging in cancer surgery. This system has been demonstrated as being capable of accurately measuring NAD(P)H fluorescence lifetimes in both simple solvent and cellular environments

    Lysozyme encapsulated gold nanoclusters for probing the early stage of lysozyme aggregation under acidic conditions

    Get PDF
    Protein aggregation can lead to several incurable amyloidosis diseases. The full aggregation pathway is not fully understood, creating the need for new methods of studying this important biological phenomenon. Lysozyme is an amyloidogenic protein which is often used as a model protein for studying amyloidosis. This work explores the potential of employing Lysozyme encapsulated gold nanoclusters (Ly-AuNCs) to study the protein’s aggregation. The fluorescence emission properties of Ly-AuNCs were studied in the presence of increasing concentrations of native lysozyme and as a function of pH, of relevance in macromolecular crowding and inflammation-triggered aggregation. AuNC fluorescence was observed to both redshift and increase in intensity as pH is increased or when native lysozyme is added to a solution of Ly-AuNCs at pH 3. The long (μs) fluorescence lifetime component of AuNC emission was observed to decrease under both conditions. Interestingly it was found via Time Resolved Emission Spectra (TRES) that both AuNC fluorescence components increase in intensity and redshift with increasing pH while only the long lifetime component of AuNC was observed to change when adding native lysozyme to solution; indicating that the underlying mechanisms for the changes observed are fundamentally different for each case. It is possible that the sensitivity of Ly-AuNCs to native lysozyme concentration could be utilized to study early stage aggregation

    Detecting Lysozyme unfolding via the fluorescence of Lysozyme encapsulated gold nanoclusters

    Get PDF
    Protein misfolding plays a critical role in the formation of Amyloidosis type disease. Therefore, understanding and ability to track protein unfolding in a dynamic manner is of considerable interest. Fluorescence-based techniques are powerful tools for gaining real-time information about the local environmental conditions of a probe on the nanoscale. Fluorescent gold nanoclusters (AuNCs) are a new type of fluorescent probes which are <2 nm in diameter, incredibly robust and offer highly sensitive, wavelength tuneable emission. Their small size minimises intrusion and makes AuNCs ideal for studying protein dynamics. Lysozyme has previously been used to encapsulate AuNCs. The unfolding dynamics of Lysozyme under different environmental conditions have been well-studied and being an Amyloid type protein, makes Lysozyme an ideal candidate for encapsulating AuNCs in order to test their sensitivity to protein unfolding. In this study, we tracked the fluorescence characteristics of AuNCs encapsulated in Lysozyme while inducing protein unfolding by Urea, Sodium Dodecyl Sulphate (SDS) and elevated temperature and compared them to complimentary Circular Dichroism spectra. It is found that AuNC fluorescence emission is quenched upon induced protein unfolding either due to a decrease in Forster Resonance Energy Transfer (FRET) efficiency between tryptophan and AuNCs or solvent exposure of the AuNC. Fluorescence lifetime measurements confirmed quenching to be collisional via oxygen dissolved in a solution; increasing as the AuNC was exposed to the solvent during unfolding. Moreover, the longer decay component Ď„1 was observed to decrease as the protein unfolded, due to the increased collisional quenching. It is suggested that AuNC sensitivity to solvent exposure might be utilised in the future as a new approach to studying and possibly even detecting Amyloidosis type diseases

    Fluorescence guided surgery

    Get PDF
    Fluorescence guided surgery (FGS) is an imaging technique that allows the surgeon to visualise different structures and types of tissue during a surgical procedure that may not be as visible under white light conditions. Due to the many potential advantages of fluorescence guided surgery compared to more traditional clinical imaging techniques such as its higher contrast and sensitivity, less subjective use, and ease of instrument operation, the research interest in fluorescence guided surgery continues to grow over various key aspects such as fluorescent probe development and surgical system development as well as its potential clinical applications. This review looks to summarise some of the emerging opportunities and developments that have already been made in fluorescence guided surgery in recent years while highlighting its advantages as well as limitations that need to be overcome in order to utilise the full potential of fluorescence within the surgical environment

    Photothermal effects of gold nanorods in aqueous solution and gel media : influence of particle size and excitation wavelength

    Get PDF
    Gold nanorods (GNRs) have emerged as the most efficient photothermal agent in cancer therapy and photocatalysis. Understanding the influence of the surrounding medium, particle size, and excitation wavelength is critical to optimising the photothermal conversion rate. Here, three pairs of large and small gold nanorods of different aspect ratios and their heat generation under laser radiation at on and off surface plasmon resonance wavelengths in aqueous solution and gel-like media are investigated. In the aqueous solution, the temperature rise of the large gold nanorods is more than with small gold nanorods at resonance excitation. In contrast to the large gold nanorods (LGNRs), the small gold nanorods (SGNRs) were less sensitive to excitation wavelength. At off-resonance excitation, the temperature rise of the SGNRs is larger than that of the LGNRs. In the agarose gel, the photothermal effect of the SGNRs is greater than LGNRs excited at the wavelength near their solution phase longitudinal surface plasmon resonance wavelength. The temperature increase of LGNRs in gel is significantly less than in aqueous solution. These findings suggest that SGNRs could be more beneficial than the LGNRs for photothermal applications in biological systems and provides further insight when selecting GNR
    • …
    corecore